Nilai \( \displaystyle \lim_{x \to 0} \ \frac{6x^5 - 4x}{2x^4+x} = \cdots \)
- -4
- -2
- 0
- 2
- 4
(EBTANAS SMA IPS 1995)
Pembahasan:
\begin{aligned} \lim_{x \to 0} \ \frac{6x^5 - 4x}{2x^4+x} &= \lim_{x \to 0} \ \frac{x \ (6x^4 - 4)}{x \ (2x^3+1)} \\[8pt] &= \lim_{x \to 0} \ \frac{6x^4 - 4}{2x^3+1} \\[8pt] &= \frac{6(0)^4 - 4}{2(0)^3+1} \\[8pt] &= \frac{-4}{1} = -4 \end{aligned}
Jawaban A.