Nilai lim_(x→0)⁡(6x^5-4x)/(2x^4+x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{6x^5 - 4x}{2x^4+x} = \cdots \)

  1. -4
  2. -2
  3. 0
  4. 2
  5. 4

(EBTANAS SMA IPS 1995)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{6x^5 - 4x}{2x^4+x} &= \lim_{x \to 0} \ \frac{x \ (6x^4 - 4)}{x \ (2x^3+1)} \\[8pt] &= \lim_{x \to 0} \ \frac{6x^4 - 4}{2x^3+1} \\[8pt] &= \frac{6(0)^4 - 4}{2(0)^3+1} \\[8pt] &= \frac{-4}{1} = -4 \end{aligned}

Jawaban A.